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SUMMARY

A zonal-embedded-grid technique has been developed for computation of the two-dimensional
Navier–Stokes equations with cylindrical coordinates. As is well known, the conventional regular grid
system gives very small grid spacings in the azimuthal direction so it requires a very small time step
for a stable numerical solution when the explicit method is used. The fundamental idea of the zonal-
embedded-grid technique is that the number of azimuthal grids can be made small near the origin of the
coordinates so that the grid size is more uniformly distributed over the domain than with the conventional
regular-grid system. The code developed using this technique combined with the explicit, �nite-volume
method was then applied to calculation of the asymmetric swirl �ows and Lamb’s multi-polar vortex
�ows within a full circle and the spin-up �ows within a semi-circle. It was shown that the zonal-
embedded grids allow a time step far larger than the conventional regular grids. For the case of the
Lamb’s multi-polar vortex �ows, the code was validated by comparing the calculated results with
the exact solutions. For the case of the semi-circle spin-up �ows, the experimental results were used for
the veri�cation. It was seen that the numerical results were in good agreement with the experimental
results both qualitatively and quantitatively. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: zonal-embedded grid; cylindrical coordinates; explicit method; Lamb multi-pole �ows;
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1. INTRODUCTION

Problems of �uid �ow bounded by circular geometry are ubiquitous in engineering applica-
tions. For instance, a circular pipe becomes a �rst choice when we consider conveying gas
or liquid from one place to another, and it is more natural to use a circular container, not a
rectangular box, in designing a mixer in a chemical process.
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In such geometry, use of the cylindrical coordinate system, if possible, is the most relevant
and desirable in the formulation and discretization of the Navier–Stokes equations in numer-
ical simulations. Then, as a speci�c tool one may suggest employing a spectral method of
some kind because the problem is periodic in the azimuthal direction, e.g. References [1–7].
However, the spectral method has a serious drawback associated with the Gibbs phenomenon
for the case in which the �rst or second derivative of the �ow �eld tends to be spatially
discontinuous, which is not exceptional for high-Reynolds number �ows.
Use of �nite di�erence or �nite volume method with the cylindrical coordinates [8, 9] also

reveals a fundamental problem when the regular grid system is employed; in this paper, the
‘regular grid system’ denotes the grid system which is built by simply drawing both radial
lines and concentric circles as shown in Figure 1(a). As is well known, under the regular
grid system extremely small time steps must be taken for the sake of numerical stability,
when an explicit method is employed, because the grid spacing in the azimuthal direction
is proportional to the radial distance from the origin, and therefore the grid spacing at the
centre is usually some ten or hundred times smaller than that at the outer boundary. One
remedy to overcome such restriction in the time step is to use an implicit method at least
in the azimuthal direction as suggested by Akselvoll and Moin [10]. The implicit (or semi-
implicit) method is indeed preferable in that a larger time step can be taken without causing
the numerical instability. On the other hand, however, the recent development of the parallel-
computation technology makes the computational �uid dynamicists revisit the explicit method,
because it is intrinsically more suitable for the parallel computation especially for the domain-
decomposition method [11–15]. In addition, the programming is simple and �exible with the
explicit method.
There are lots of computational techniques that can resolve some of the fundamental prob-

lems encountered in the cylindrical geometry, e.g. the spectral element method proposed by
Patera [16] and employed by others [17–20]. However, as usual, most of the numerical
techniques cannot resolve the problems completely, and each has its own merit focusing on
resolving any one or some part of the problems.

(a) (b)

Figure 1. Regular and zonal-embedded grids for the domain within a circle. I × J =32 × 86 for the
regular grids and M =4, I0 = 4, J0 = 16 (I × �J = 32 × 86) for the zonal-embedded grids: (a) regular

grid; and (b) zonal-embedded grid.
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FINITE VOLUME METHOD WITH ZONAL-EMBEDDED GRIDS 265

We propose in this study to use the zonal-embedded-grid system shown in Figure 1(b)
rather than the simple regular grid system, Figure 1(a), for the computation of �uid �ow
using an explicit method within a domain surrounded by a wall of circular geometry. With
zonal-embedded grids, we can control the azimuthal grid spacing independent of the radial
distance from the origin, and thus the time step can be made signi�cantly larger than that with
the regular grids. In particular, it may be useful when an increased resolution in the azimuthal
direction is required near the wall of a circular pipe in order to catch small vortical structures
of turbulent �ows at high Reynolds numbers. In this case, the azimuthal grid spacing near the
wall can be set arbitrarily small while that near the pipe centre is kept still large so that the
critical time step occurs not at the centre but near the wall itself, which is a clear indication
of �exibility in the grid design.
Use of zonal-embedded grids in computational �uid dynamics is not new. Kravchenko et al.

[21] introduced zonal-embedded grids in a numerical study on the turbulent �ow above a
�at plate. However, no studies have been found in the literature that employed the zonal-
embedded-grid system in solving a �uid �ow problem with the cylindrical coordinates. On
the other hand, the method of dropping the number of modes as the origin is approached with
a Fourier spectral method can be considered as an alternative way to overcome the numerical
instability near the origin, as pointed out by a referee.
In Section 2 the governing equations for two-dimensional incompressible �ows are intro-

duced speci�cally for asymmetric swirl �ows and Lamb’s multi-polar vortical �ows within
a full circular and spin-up �ows within a semi-circular boundary. The method of building a
zonal-embedded-grid system together with the overall numerical methods is then described in
Section 3. We present the numerical results in Section 4, and �nally, Section 5 will summarize
the conclusions.

2. FORMULATION OF THE GOVERNING EQUATIONS

We consider an incompressible �uid of density � and kinematic viscosity � within a circular
or a semi-circular container of radius R. With a suitable choice of the reference length,
time, velocity and pressure, which is dependent on the particular model �ow, we can write
the governing equations, in terms of the cylindrical coordinates, in a dimensionless form as
follows:
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where all the variables are dimensionless; t is the time, r and � the radial and azimuthal
coordinates, respectively, u and v the velocity components along each direction, and p the
pressure. The mass-source term w and the body-force terms f and g on the right-hand sides
of the above equations take di�erent forms depending on the �ow models. Table I shows the
speci�c forms of these terms for three kinds of �ow models treated in this study. This table
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Table I. The three model �ows treated in this study, and the corresponding reference length, velocity
and time used in deriving the dimensionless governing equations.

Asymm. swirl �ow, Lamb’s multi-pole �ows Spin-up �ows
Flow models decaying in time periodic in time decaying in time

Ref. length R R R
Ref. velocity u∗

max u∗
max R��

Ref. time R=u∗
max R=u∗

max 1=��
Re Ru∗

max=� Ru∗
max=� R2��=�

w 0 0 WE=h
f 0 nB(t)[Jn(ar)=r] cos n� 2(q(t) + 1=�)v + uWE=h
g 0 −aB(t)J ′

n(ar) sin n� −2(q(t) + 1=�)u+ vWE=h− rq′(t)

B.C. u= v=0 at r=1 u= @(rv)=@r=0 at r=1
u= v=0 at r=1
u= v=0 at �=0; �

I.C. Equation (3)
u = nA(0)[Jn(ar)=r] cos n�
v= − aA(0)J ′

n(ar) sin n�
u= v=0

Re, the Reynolds number, and w, f and g, appearing on the right-hand side of Equations (1), (2a) and (2b).
B.C. and I.C. indicate the boundary and initial conditions, respectively. u∗

max denotes the maximum physical
velocity observed over the whole spatial and temporal domain. Refer to text for the other nomenclature.

also presents the reference quantities used in the derivation of the dimensionless equations, the
Reynolds numbers, boundary conditions and initial conditions relevant for each �ow model.
The initial conditions for the �rst model �ow, i.e. the swirl �ow, are characterized by a

radially parabolic distribution of the azimuthal velocity component up to r=�c and a zero
radial velocity component as follows:

u=0; v=

⎧⎪⎨
⎪⎩
r(�c − r)
(�c=2)2

for 06r6�c

0 for r¿�c

(3)

This swirl �ow is axisymmetric and the variables are independent of the azimuthal coor-
dinate �. For a more general case, we break this symmetry by parallely moving this basis
�ow as much as rc along the line �=�=2 so that the swirl’s centre is now at the point
(r; �)= (rc; �=2).
The Lamb’s multi-pole �ows are periodic in time due to time-periodic body-force terms.

In Table I, Jn(ar) stands for the Bessel function of the �rst kind of order n and a satis�es
Jn(a)=0. The functions B(t) and A(t) are

B(t)=
−2�rc

√
1 + (a2=2�Re)2

nJn(arc)
sin 2�t (4a)

A(t) =
2=a√

1 + (a2=2�Re)2

(
cos 2�t − a2

2�Re
sin 2�t

)
(4b)

where rc satis�es arcJ ′
n(arc)− Jn(arc)=0. This restriction corresponds to the requirement that

u becomes 1 at the point given by r = rc and �=0 where |u| becomes maximum. The exact
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solutions for the Lamb’s �ows are shown to be

u=
nA(t)Jn(ar)

r
cos n� (5a)

v= − aA(t)J ′
n(ar) sin n� (5b)

Thus the vortices are stationary in space but their strength is changing periodically in time.
The number of vortices (or poles) is 2n, and the Lamb dipole corresponds to n=1.
The third model �ows are spin-up �ows within a semi-circular container. The container is

initially rotating with a constant angular velocity � −�� for a long time so that the �uid
remains in a state of solid-body rotation. Then, at a certain instant of time the container’s
angular speed is increased abruptly but smoothly by as much as �� and �nally maintained at
a constant value �. During this speed-up period, the so-called spin-up �ow starts to develop
inside the container. It is well known that when the ratio ��=�, called the Rossby number
and denoted as � in this paper, is small enough the axial �ow (�ow along the axis of rotation)
is inhibited and the �ow tends to be basically two dimensional [22]. The Ekman-pumping
velocity WE shown in Table I is given by the linear Ekman-pumping law [23]

WE =

√
�=Re
2

& (6)

where the vorticity & is determined by

& =
1
r

(
@rv
@r

− @u
@�

)
(7)

and h in the table is the dimensionless liquid depth in a quiescent state. This pumping velocity
brings the non-zero mass source w in (1), which tends to be uniformly distributed over the
liquid column at low Rossby numbers, in such a way that the two-dimensional assumption be
valid. The function q(t) controls the speed-up mode, and for a smooth operation we employ
the harmonic function:

q=

{−(1 + cos !t)=2 for 06t6ts

0 for t¿ts
(8)

The speed-up time ts is related to ! by ts =�=!.

3. IMPLEMENTATION OF ZONAL-EMBEDDED GRIDS AND NUMERICAL METHODS

3.1. Zonal-embedded grid

To construct a zonal-embedded-grid system, the entire domain is �rst divided into several
sub-domains or zones by concentric circles. Figure 1(b) shows the case with four zones. In
each zone, the grids are built in the same way as the regular grids are made. However, the
number of grids in the azimuthal direction di�ers from one zone to another, and following
the purpose of this study, we increase the number of azimuthal grids in the outer zone. The
simplest way to do this is to double the number of grids each time one crosses the zones
radially outward. Figure 1(b) is a typical example in that it starts from 16 grid lines in the
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innermost zone and 32 lines in the next, progressing to 128 lines in the outermost zone. To
keep a constant azimuthal grid-spacing at the outer end position of each zone, we need to
double the radial size of each zone as one crosses the zones outward, except for the second
zone as illustrated below.
Suppose we have M zones. Then Im, the number of radial grids, and Jm, the number of

azimuthal grids, at the mth zone are given by

Im=

{
I0 for m=1

2m−2I0 for 26m6M
(9a)

Jm=2m−1J0 (m=1; 2; : : : ; M) (9b)

where I0 and J0 are the number of grids in the �rst zone. The reason of taking the same Im
for the �rst and second zones is related to the implementation of the extrapolation scheme
@3�=@r3 = 0 in evaluation of a �ow variable � near the centre point. In order to use only
the �rst zone’s variables in this extrapolation, so that the algorithm becomes simple, at least
four radial grids must be established in the �rst zone, I0¿4. For instance, with M =4, I0 = 4,
if we use the formula Im=2m−1I0 (16m6M) instead of (9a), then Im=4, 8, 16, 32 and
the total number of radial grids becomes I =60. On the other hand, if we use (9a), then
Im=4, 4, 8, 16 and we have I =32. Thus Equation (9a) allows for implementation of a
simple extrapolation scheme near the centre point at a lower I . Parameters I0 and J0 together
with M control the overall grid spacings. The averaged number of the azimuthal grids, �J , is
given by

�J =
1
I

M∑
m=1
ImJm

Figure 1(b) is made with M =4, I0 = 4 and J0 = 16, which gives the total number of radial
grids within the entire domain, I =32, the number of azimuthal grids in the outermost zone,
J =128, and the averaged number of azimuthal grids, �J =86.

3.2. Discretization of the continuity and momentum equations

Associated with the allocation of pressure and velocity components in each cell, we employ
the staggered-grid method; the pressure is de�ned at the centre of the p-cell, and the velocity
component at the mid-point of each line normal to the component surrounding the p-cell.
There are two kinds of p-cells; one is a regular cell composed of four edges (cells marked
‘O’, ‘B’, and ‘C’ in Figure 2) and the other is a special cell composed of �ve edges (marked
‘A’ in Figure 2).
The continuity equation (1) is �rst integrated over the regular p-cell shown in Figure 3(a).

The result is

ue�se − uw�sw + vn�r − vs�r=�s0�r wo0 (10)

where �r and �s (= r��) are the radial and azimuthal grid spacings, respectively, and wo0
represents the value of w at the cell’s centre point ‘0’ given at the previous time step. The
superscript ‘o’ indicates that the variable is known and evaluated at the previous time step.
Notice that, for the spin-up �ows, the right-hand side also contains the unknown velocity
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O
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Figure 2. Four types of cells in the zonal-embedded-grid system.
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Figure 3. Four types of p-cells with various symbols to be used in discretization of the continuity
equation and derivation of the discretized pressure equations: (a) regular p-cell of ‘O’ type; (b) special

p-cell of ‘A’ type; (c) special p-cell of ‘B’ type; and (d) special p-cell of ‘C’ type.
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components u and v (refer to Table I). Treating these variables really unknown, like the
other velocity components on the left-hand side of (10), inevitably results in a much complex
pressure equation. Therefore we treat these terms explicitly. The underlying principle for the
relevance of treating the right-hand side of (10) known comes from the fact that at high
Reynolds numbers the magnitude of w is in general much smaller than that of u or v.
The momentum equations (2a) and (2b) are then integrated over the regular u- and v-cells,

respectively, to give

ue= uoe +��
(
Fe − pE − p0

�r

)
; uw = uow +��

(
Fw − p0 − pW

�r

)
(11a)

vn= von +��
(
Gn − pN − p0

�s0

)
; vs= vos +��

(
Gs − p0 − pS

�s0

)
(11b)

where F and G denote the momentum �uxes containing the convection, di�usion and source
terms. Formulation for these quantities will be given in the next subsection. The time step
�� takes �t or �t=2 depending on the stage number within one step of the fourth-order
Runge–Kutta method (to be addressed in Section 3.6). The subscripts in (11a) and (11b)
are still based on the p-cell. Substituting these results into the discretized continuity equation
(10) gives us the pressure equation reading:

awpW + aspS + a0p0 + aepE + anpN = b

aw = �sw=�r2; ae=�se=�r2; as=1=�s0; an=1=�s0

a0 = − (aw + ae + as + an)
b = (Fe�se − Fw�sw)=�r +Gn −Gs −�s0(wo0 − woo0 )=�t

(12)

where woo0 stands for the value of w0 at the previous-previous time step. Here too, the term
(w0−wo0)=�t on the right-hand side of the equation for b has been replaced by (wo0−woo0 )=�t
to avoid complexity; in fact the former corresponds to a discretized form of @w=@t. An easy
way of implementing the impermeable condition at the walls is to set both the corresponding
coe�cient a and �ux F or G zero at the edge of the cell contacting each wall.
For the special p-cell of ‘A’ type shown in Figure 3(b), the continuity equation takes the

form

(ue1 + ue2)�se − uw�sw + vn�r − vs�r=�s0�r wo0 (13)

where the formula for ue1 and ue2 now contain pS and pN ;

ue1 = uoe1 + ��
(
Fe1 − pE1 − p0

�r

)
−��p0 − pS

4�r
(14a)

ue2 = uoe2 + ��
(
Fe2 − pE2 − p0

�r

)
−��p0 − pN

4�r
(14b)

The last term on the right-hand side of each of these equations comes from discretization of
@p=@r at the point ‘e1’ or ‘e2’ while keeping the second-order accuracy. For instance at the
point ‘e1’ we have @p=@r=(pE1−ps0)=�r and a linear interpolation gives ps0 = (3p0+pS)=4,
which results in @p=@r=(pE1 − p0)=�r + (p0 − pS)=4�r. The �rst term on the right-hand
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side of this equation is included in the bracket on the right-hand side of (14a). It can be
shown that the matrix of the discretized pressure equation system to be given by substituting
(14a) and (14b) into the continuity equation keeps the symmetry property. Now, substituting
(14a) and (14b) together with the formula for uw, vn and vs into (11) yields

awpW + aspS + a0p0 + ae1pE1 + ae2pE2 + anpN = b (15)

where the formula for the coe�cients as, an, a0 and b are

as = an=1=�s0 −�se=(4�r2)
a0 = − (aw + ae1 + ae2 + as + an)

b=[(Fe1 + Fe2)�se − Fw�sw]=�r +Gn −Gs −�s0(wo0 − woo0 )=�t
and those for the other coe�cients are the same as those shown under (12).
Special attention must be given to the cells adjacent to the walls. The coe�cient a at the

edge contacting the wall must be set at zero. It is also required to set F at zero at the edge
contacting the wall at r = 1 or at the origin r=0. However, when the cell is contacting the
�at wall at �=0 or at �=� for the case of the semi-circular problem, the variable G should
not be set at zero, and further the variable b takes the form

b=[(Fe1 + Fe2)�se − Fw�sw]=�r +Gn −Gsw�se�s0=(4�r2)−�s0(wo0 − woo0 )=�t
for the case where the cell faces the wall at the ‘s’ edge (�=0), and

b=[(Fe1 + Fe2)�se − Fw�sw]=�r +Gnw�se�s0=(4�r2)−Gs −�s0(wo0 − woo0 )=�t
for the case where the cell faces the wall at the ‘n’ edge (�=�). Here, Gsw and Gnw must
be evaluated from the corresponding momentum equations at the facing walls. For instance,
the formula for Gsw is as follows:

Gsw= − r0q′(t) +
1
Re

(
1
r20

�2v
��2

+
2
r20

�u
��

)
s

(16)

The symbol ‘�’ stands for the discretization of a derivative; in this study the simplest formulae
are used for this, e.g.

�2v
��2

=
v3 − 2v2
��2

(17a)

�u
��
=
2u02
��

(17b)

where v2 and v3 denote the v-value at the centre of each edge apart from the wall as much
as �� and 2��, respectively, and u02 is the u-value at the centre of the p-cell contacting the
wall (Figure 4). Instead of using the one-sided di�erence formula (17a), we can employ the
centred di�erence formula

�2v
��2

=
v2 − 2v1 + v0

��2
= 0 (18)

where the second equality comes from the impermeable condition v1 = 0 and the condition
v0 = − v2 (or �v=��=0) at the walls.
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u02

v3

v2

� = 2∆�

� = ∆�

� = 0

Figure 4. De�nition of local variables for use in discretization of �2v=��2 and �u=��, Equation (17),
for the cell contacting the wall at the ‘s’ edge.

For the p-cell of ‘B’ type shown in Figure 3(c), the discretized continuity equation takes
the same form as (10). The formula for ue, vn and vs are also the same as the corresponding
ones in (11a) and (11b). The formula for uw is

uw= uow +��
(
Fw − p0 − pW

�r

)
−��pW − pW1

4�r
(19)

Substituting these into (10), we get the result of (12) and all the coe�cients are also the
same as the corresponding ones shown under (12) except for b which in this case reads

b=(Fe�se − Fw�sw)=�r +Gn −Gs −�s0(wo0 − woo0 )=�t +�sw(poW − poW1)=(4�r2) (20)

Here, the last term is composed of the known pressures evaluated at the previous time step.
These pressures are treated as known instead of unknown in order to make the coe�cient
matrix of the pressure equation symmetric so that we can use an e�cient algorithm based
on the conjugate gradient (CG) method; if the coe�cient matrix were not symmetric we
would need to use a solver such as Bi-Conjugate Gradient Stabilized (Bi-CGSTAB), and then
the computational time needed in solving the discretized pressure equation would be almost
double the time needed when the CG method is used.
For the ‘B’-type cell too, we must pay a special attention to the evaluation of coe�cients

near the walls. For instance, when the wall contacts the cell at the ‘s’ edge, the coe�cient as
should be taken as zero, and b becomes

b=[Fe�se − Fw�sw]=�r +Gn +Gsww�sw�s0=(4�r2)−�s0(wo0 − woo0 )=�t
Gsww essentially takes the same form as (16), but in this case this value must be evaluated
at the mid-point between W and W1.
For the p-cell of ‘C’ type shown in Figure 3(d), we can follow a very similar procedure

as the case for the ‘B’-type cell described above.
Special attention must be given to evaluating w0 in terms of the velocity components

u and v. Since w0 is just proportional to the vorticity & (refer to Table I and Equation
(6)), one may try to obtain this by �rstly computing each vorticity at the grid point where
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the solid lines intersect in Figure 3, and secondly averaging them to get the value at the
point ‘0’. However this method does not guarantee the conservation property. For the con-
tinuity equation to keep the mass conservation, the vorticity (and therefore w0) must be
evaluated directly at the point ‘0’.

3.3. Discretization of the momentum �ux

The momentum �ux F and G appearing in the pressure equations can be obtained by the
following discretized formula:

F =
−Fc + Fd

r0
(21a)

Fc=
1
�r
( reu2e − rwu2w) +

(
�uv
��

)
0
− v20 − r0f0 (21b)

Fd=
1
Re

[
re(�u=�r)e − rw(�u=�r)w

�r
+
(�u=��)n − (�u=��)s

�s0
− u0
r0

− 2
r0

(
�v
��

)
0

]
(21c)

G=
−Gc +Gd

r0
(21d)

Gc=
1
�r
( reueve − rwuwvw) +

(
�v2

��

)
0
+ u0v0 − r0g0 (21e)

Gd =
1
Re

[
re(�v=�r)e − rw(�v=�r)w

�r
+
(�v=��)n − (�v=��)s

�s0
− v0
r0
+
2
r0

(
�u
��

)
0

]
(21f)

Here, two kinds of algorithms for the azimuthal derivatives are used. The �rst kind is the
second-order algorithm (

��
��

)
0
=
�+ − �−
��

(22a)

and the second is the fourth-order algorithm(
��
��

)
0
=
27(�+ − �−) + �++ − �−−

24��
(22b)

where �+, �−, �++ and �−− denote the value of the variable � at the points apart from the
point ‘0’ as much as ��=2, −��=2, 3��=2 and −3��=2, respectively, in the � direction. In
evaluating the �-values at the points where the variable is not de�ned, we used two kinds of
interpolation algorithms:

�0 =
�+ + �−

2
(23a)

as the second-order and

�0 =
9(�+ + �−)− (�++ + �−−)

16
(23b)
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as the fourth-order formula. As will be shown in the following section, application of the
second-order formula brings a signi�cant error in the numerical results when the �ow near
the origin of the coordinate system is characterized basically as a uniform �ow. For in-
stance, when the �ow near the origin is uniform with the speed U and directed along
the x direction, its velocity components can be described asymptotically as u=U cos �,
v= − U sin � and therefore the variation of these variables are signi�cant because �� is in
general large near the origin. Since making �� large near the origin corresponds in practice
to the fundamental reason for the introduction of the zonal-embedded-grid method, employing
higher-order algorithms such as (22b) and (23b) instead of (22a) and (23a) is very important
for successful applications. When the �ow is purely radial or azimuthal, we have ��=��=0,
and there is no di�erence between the second- and fourth-order algorithms.

3.4. Treatment at the centre point

The mathematical singularity appearing in the governing equations written in terms of the
cylindrical coordinates is in fact removed by adopting the staggered-grid system. However,
we have to evaluate u1j de�ned at the centre point and v1j de�ned beyond the centre point
in order to compute u2j and v2j (refer to Figure 5). The method of Fukagata and Sasaki
(F&S hereafter) can be described as follows. First, from the components u2j and v2j obtained
at the previous time step, we approximate the Cartesian velocity components �ux and �uy at the
centre point by the formula

�ux=
1

J0 − 1
J0∑
j= 2
(u2j cos �uj − v2j sin �vj) (24a)

�uy=
1

J0 − 1
J0∑
j= 2
(u2j sin �uj + v2j cos �vj) (24b)

u1 j u2 j

v2 jv1 j vcj

Figure 5. De�nition of local velocity components near the centre point (denoted as a dashed line) for
use in the centre-point treatment.
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where �uj and �vj are � coordinates at the u- and v-grid point, respectively. Then at the centre
point we have

u1j= �ux cos �uj + �uy sin �uj (25a)

vcj= �uy cos �vj − �ux sin �vj (25b)

The variable v1j is next obtained by a simple extrapolation formula

v1j=2vcj − v2j (26)

The second treatment we employed in this study is simply using the extrapolation schemes

u1j=3u2j − 3u3j + u4j (27a)

v1j=3v2j − 3v3j + v4j (27b)

which is equivalent to applying @3�=@r3 = 0 at the centre point.

3.5. Conservation properties

The �nite volume method described so far guarantees the mass conservation in a discrete
sense.
Each component of the momentum is also conserved in most cells except for the cells

near the interface between the neighbouring zones. For the u-momentum to be conserved
at the interfacial u-cell of Figure 6(a), the term u2e on the right-hand side of (21b) and
the term (�u=�r)e on the right-hand side of (21c) must be replaced by (u2e1 + u

2
e2)=2 and

[(�u=�r)e1 + (�u=�r)e2]=2, respectively. Similarly, for the v-momentum to be conserved at the
interfacial v-cell of Figure 6(b), the term ueve and on the right-hand side of (21e) and the

(a) (b)

n n

w w
0 0

e2
e2

e3

e1
e1

s s

Figure 6. Interfacial u- and v-cells (surrounded by dashed lines around ‘0’) subjected to a special
attention for deriving the discretized momentum �ux which guarantees the conservation of momentum:

(a) interfacial u-cell; and (b) interfacial v-cell.
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term (�v=�r)e on the right-hand side of (21f) must be replaced by (ue1ve1 +2ue2ve2 +ue3ve3)=4
and [(�v=�r)e1 + 2(�u=�r)e2 + (�v=�r)e3]=4, respectively.
Conservation of energy is relevant only for the convection terms. The energy-conservative

scheme for the cylindrical coordinate system has been proposed by e.g. Fukagata and Sasaki.
For instance for a regular u-cell, the term reu2e − rwu2w on the right-hand side of (21b) must
be replaced by (ru)e �ue − (ru)w �uw, where the over-bar indicates an arithmetic average like
��e=(�0 + �E)=2. In this way we can construct easily the energy-conservative discrete equa-
tions for the regular cells. However it turns out to be very di�cult to contrive the energy-
conservative algorithm for the interfacial cells.

3.6. Fourth-order Runge–Kutta method and incomplete Cholesky conjugate gradient (ICCG)

After being discretized spatially and combined, the momentum equations (2a) and (2b) take
the forms

du
dt
= f(u; p)

where the vector function f stands for the discretized form of the right-hand side of Equations
(2a) and (2b). The algorithm of the fourth-order Runge–Kutta method for this system of
equations can be written as

First stage:

k1 =�t f(uo; p∗1); u∗1 = uo +�t k1=2

Second stage:

k2 =�t f(u∗1; p∗2); u∗2 = uo +�t k2=2

Third stage:

k3 =�t f(u∗2; p∗3); u∗3 = uo +�t k3

Fourth stage:

k4 =�t f(u∗3; p∗4); un= uo + (k1 + 2k2 + 2k3 + k4)=6

Therefore the time step �� used in the formulation of the discretized pressure equations takes
�t=2 in the �rst and second stages, and �t in the third stage. Further, the pressures p∗1, p∗2,
p∗3 and p∗4 are determined by solving the pressure equations such that the velocities u∗1,
u∗2, u∗3 and u∗4 satisfy the continuity equations, respectively.
The pressure equations are solved by employing the ICCG (incomplete Cholesky conjugate

gradient) method. As described earlier, in order to keep the bene�t of CG against Bi-CGSTAB,
the coe�cient matrix for the discretized pressure equation was kept symmetrical by taking
some interfacial pressures known.
The initial pressure �elds needed in the iteration of second and fourth stages were set by

using a simple extrapolation scheme

p∗2 = 2p∗1 − p0∗3; p∗4 = 2p∗3 − p∗1 (28)

where p0∗3 denotes p∗3 in the previous time level. It turns out that such extrapolation speeds
up the convergence remarkably.
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4. NUMERICAL RESULTS

The numerical algorithms developed in this study were tested for three kinds of two-
dimensional model �ows as shown in Table I; asymmetric swirl �ows decaying in time
within a full circle, Lamb’s multi-pole vortical �ows within a full circle, which is periodic
in time, and spin-up �ows decaying in time within a semi-circular container. In the �rst
�ow model, we show that the zonal-embedded-grid system provides a signi�cant improve-
ment in the stability limit as for the time step. We also show the need for the use of the
O(��4)-algorithm in the proposed method. The reason for selecting the Lamb’s multi-pole
�ows as the second problem is that they have exact solutions so that we can measure the
numerical accuracy of the proposed method in comparison with the conventional one. In the
third �ow model, we compare our numerical results with the experimental results.

4.1. Asymmetric swirl �ows within a full circle

The algorithms used in this �ow model follow Sections 3.2 and 3.3, and the simple extrap-
olation schemes, i.e. (27a) and (27b), are used in the centre-point treatment. The Reynolds
number is �xed at Re=1000. Table II shows the limit of the time step �tlim obtained from
numerical experiments for an asymmetric swirl �ow within a full circle described in Section 2.
The results reveal that even at the smallest number of grids the zonal-embedded-grid system
permits a time step 12 times larger than that for the regular grid system. When the number
of grids is largest, then the embedded grid system allows a 500 times larger time step than
that for the regular grid system. As seen from this table, the bene�t of the zonal-embedded
grids, as for the time step, is more pronounced as the number of grids is increased.
For the swirl �ow model given above, the numerical accuracy was checked qualitatively and

comparatively by applying the second-order algorithms (22a) and (23a) (O(��2)-algorithm
hereafter) and fourth-order algorithms (22b) and (23b) (O(��4)-algorithm hereafter) in eval-
uation of the azimuthal derivatives and the variables at unde�ned points. Figure 7 shows
distribution of the numerically obtained momentum �ux F . We can judge the accuracy by the
smoothness of the distribution. It is seen that the second-order algorithm gives a non-smooth,
deteriorated pattern, especially near the origin of the coordinates. Since the zonal-embedded
grid is characterized by a small number of azimuthal grids near the origin, applying a higher-
order algorithm such as fourth-order is crucial in establishing numerical accuracy. A more
detailed quantitative comparison for the numerical accuracy among the various algorithms
will be addressed in the following subsection.

Table II. Limit of the time step �tlim of each grid system above which the
numerical computation becomes unstable.

Grid system (I × �J ;M; I0; J0) Regular grid Embedded grid

32× 86; 4; 4; 16 0.0033 0.040
64× 171; 5; 4; 16 0.00020 0.019
128× 342; 6; 4; 16 0.000012 0.0062

These results are obtained from the numerical computation for a decaying motion
of a swirl �ow described in the text with rc =0:25, �c =0:4 at Re=1000.
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Figure 7. Contour lines of the function F , x component of the momentum �ux, given by applying:
(a) O(��2)-algorithm; and (b) O(��4)-algorithm in evaluation of the azimuthal derivatives and the
unde�ned variables for the circular patch of swirl �ow, described in the text, with Re=1000, rc=0:2

and �c=0:5. The zonal-embedded grid is used with I × J =65× 257 (M =5, I0 = 4, J0 = 8).

4.2. Lamb’s multi-pole �ows

The most important thing that must be done after a new algorithm or numerical method has
been developed is to con�rm the numerical accuracy and its performance. To do this, an
appropriate �ow model must be selected or designed. In this study, we selected the Lamb’s
multi-pole �ows, which is periodic in time by introduction of time-periodic body forces in the
momentum equations (refer to Table I). The exact solutions are given by (5a) and (5b), and
typical �ow �elds are shown in Figure 8. Since the exact solutions are in a separable form,
the vortices are stationary. In this subsection, we also show the numerical results obtained
by using a semi-implicit fractional-step method with regular grids (‘F-S-R’ hereafter). The
fractional-step method used in this computation is almost the same as that of Akselvoll and
Moin [10], and the time integration is implicit only in the azimuthal direction.
Table III lists the numerical error �u and the run time obtained for the various combinations

of algorithms, explained so far, for the Lamb multi-pole �ows at Re=10. Here, �u is de�ned
as the time average of maximum error of u over the domain. At this Reynolds number,
the �ow becomes periodic from the second forcing period, that is at t¿2. Therefore the
time average was performed for the data taken for the last period 26t63. The run time
shown at the last column in this table (and all for the other runs presented in this paper)
is measured for the three forcing periods from a desk-top computer with 1:8 GHz CPU and
256 MB RAM.
The �rst case shown in Table IV follows the basic algorithms explained in Sections 3.2

and 3.3. Comparing this result with that given by F-S-R, we have found that this numerical
error is far larger than F-S-R. After a careful investigation of the numerical data, we have
designed to use governing equations with some viscous terms di�erent from the original ones
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(a) (b)

Figure 8. Velocity-vector plots of Lamb’s dipole and 12-pole
�ows: (a) Lamb dipole; and (b) Lamb 12-pole.

Table III. Numerical error �u and the run time for the Lamb multi-pole �ows at Re=10 with the
zonal-embedded grids; M =4, I0 = 4, J0 = 16 (I × �J =32× 86).

No. of Conserv. Centre Di�usion @=@�n, Run
Case poles �t algorithm u; v terms interpo �u time

1 Dipole 1-03 Non Extrapo Old 4th 22.4-03 294 s
2 Dipole 1-03 Non Extrapo New 4th 3.04-03 341
3 Dipole 1-03 Cons Extrapo New 2nd 4.28-03 313
4 Dipole 1-03 Cons F&S New 2nd 4.59-03 315
5 Dipole 5-04 Non F&S New 4th 3.26-03 668
6 Dipole 5-04 Non Extrapo New 4th 3.04-03 656
7 4-pole 1-03 Non Extrapo New 4th 4.36-03 341
8 6-pole 1-03 Non Extrapo New 4th 2.80-03 339
9 8-pole 1-03 Non Extrapo New 4th 2.62-03 342
10 10-pole 1-03 Non Extrapo New 4th 3.05-03 346
11 12-pole 1-03 Non Extrapo New 4th 3.49-03 344
12 16-pole 1-03 Non Extrapo New 4th 4.72-03 344

The abbreviation ‘non’ in the fourth column indicates the non-conservative algorithm described in Sections 3.2
and 3.3 and ‘cons’ the conservative algorithm discussed in Section 3.5. Refer to the text for the ‘di�usion
terms’ in the sixth column. The next column is associated with the order of accuracy in discretization of
the azimuthal derivatives and interpolations described in Section 3.3. Refer to the text for the details of
the numerical accuracy �u and the run time. Italic words stress the corresponding scheme change from the
upper-row case.

Table IV. E�ect of grid system (M; I0; J0) on the limit of the time step �tlim for
a spin-up �ow inside a semi-circular cylinder; Re=5000, �=1, h=1, !=10.

Grid system (I × J ;M; I0; J0) �tlim

64× 256; 5; 4; 16 0.012
64× 256; 4; 8; 32 0.0053
64× 256; 3; 16; 64 0.0017

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:263–295



280 Y. K. SUH AND C. H. YEO

(2a) and (2b). The low level of accuracy was found to arise from the terms

viscous1 =
@2u
r2@�2

− u
r2

− 2
r2
@v
@�

(29a)

in (2a) and

viscous2 =
@2v
r2@�2

− v
r2
+
2
r2
@u
@�

(29b)

in (2b), predominantly near the centre point of the domain. This can be explained for the
case when the �ow is uniform near the centre point. Suppose we have a uniform �ow given
by u= a cos � + b sin � and v= − a sin � + b cos �. Then each of three terms in (29a) is
evaluated to be −(a cos �+ b sin �)=r2, −(a cos �+ b sin �)=r2 and 2(a cos �+ b sin �)=r2.
Thus viscous1 of (29a) becomes zero after summed up, but notice that each has a large value as
the centre point is approached. Therefore even small relative errors contained in the constants
a and=or b can result in signi�cant errors in evaluation of the viscous terms; since errors in a
and b should be larger when the grid resolution is poorer, the zonal-embedded-grid system is
susceptible to such large errors compared with the regular grids. To solve this problem, we
�rst introduce the continuity equation to transform (29a) and (29b) into the following:

viscous1 =
(
@2u
r2@�2

+
u
r2

)
+
2
r
@u
@r

(30a)

viscous2 = −
(
@2v
r2@�2

+
v
r2

)
− 2
r
@2u
@�@r

(30b)

In this form we still have the accuracy problem due to the terms within brackets, but the last
term in each equation causes no signi�cant problem. The next step is to assume locally

u= au cos �+ bu sin �+ cu; v= av cos �+ bv sin �+ cv

and to substitute these into the terms within brackets. Then they become simply

viscous1 =
cu
r2
+
2
r
@u
@r

(31a)

viscous2 = −cv
r2

− 2
r
@2u
@�@r

(31b)

The �nal step is representing the constants cu and cv in terms of the velocity components. It
can be shown that by using the neighbouring grid points in the azimuthal direction, we end
up with

cu=
uN − 2u0 cos ��+ uS

2(1− cos ��) (32a)

cv=
vN − 2v0 cos ��+ vS
2(1− cos ��) (32b)

where the subscripts ‘N ’, ‘0’ and ‘S’ are as de�ned in Figure 3. The test run of case 2 has
been done with the ‘new’ scheme described above, and it is shown that the error is 7 times
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smaller than the conventional scheme, case 1. Therefore the numerical results to be presented
in the followings were obtained only with the new scheme.
Notice that the form of (30a) and (30b) is exact as far as the incompressibility condition is

satis�ed. For a uniform �ow de�ned as u = cos � and v= − sin �, we can compare the error
given from the application of the conventional central di�erence algorithm to (29a) and that
given from application of (31a) with (32a) to the new form (30a). The exact value of the
term viscous1 in this case is zero. As a test cell, we take the u-cell very close to the origin
with its centre being at r=�r and the azimuthal grid size of this cell being �� = 0:52,
corresponding to J0 = 12. Now we apply the central di�erence algorithm to the original form
(29a) (or equivalently to (30a)) to get

viscous1 =
@2u
r2@�2

− u
r2

− 2
r2
@v
@�
=
1
r2

(
2(cos ��− 1)

��2
− 1 + 2 sin ��

��

)
= − 166

which is far from the exact value. On the other hand, the new form (30a) with (31a) and
(32a) gives the exact value, zero.
The two test runs addressed above have been performed with the non-conservative algo-

rithms. The word ‘non-conservative’ means that the corresponding scheme does not consider
the energy conservation. In this category, we have two further branches of schemes; the
�rst scheme is as described in Section 3.3 and the momentum is conserved for all the cells
except for the interfacial cells, and the second branch of scheme considers the momentum
conservation even for the interfacial cells. However, the numerical test revealed that the lat-
ter produces larger errors than the former. Therefore all the results produced by employing
the non-conservative scheme were obtained by using the former one. On the other hand,
the conservative scheme means that the energy conservation of the convection terms was con-
sidered, as presented in Section 3.5, but not at the interfacial cells. To apply the conservative
algorithm, the fourth-order accurate scheme for the azimuthal derivatives and interpolations
in the azimuthal direction cannot be adopted. The case 3 corresponds to such a set, and we
can see that the numerical error is larger than the case with non-conservative but O(��4)
schemes (case 2). When the F&S scheme was applied at the centre point with the conservative
scheme (case 4), the situation becomes worse. In the case 5, the F&S scheme is combined
with the non-conservative scheme and it turns out that the error becomes smaller. Again the
centre-point treatment is changed from F&S to the extrapolation strategy, @3�=@r3 = 0, with all
the other set unchanged, and then we have an improved accuracy (case 6). This then clearly
indicates that as far as the numerical accuracy is concerned, both the non-conservative but
O(��4)-accurate scheme and the extrapolation scheme for the centre-point treatment are better
than the conservative but O(��2)-accurate scheme and the F&S method for the centre-point
treatment.
The cases 7–12 test the e�ect of the �ow types on the numerical accuracy. The result is

not monotonous with the change of the number of poles. When the number of poles is 4
(case 7), the error is larger than that for the dipole �ow. From the 4-pole’s case the accuracy
is improved up to 8-pole (cases 8 and 9). The error is then increased again when the number
of poles is increased (cases 10–12). As shown in Figure 8, the vortex size becomes smaller
and more concentrated at the outer region as the number of poles is increased. As will be
shown below, such �ow patterns are related to the optimal choice of the number of zones in
the grid design.
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Figure 9. Numerical error �u for Lamb dipole and 12-pole �ows. The lines with solid-circle symbols
are given from the fractional-step method with regular grids. Open symbols are given from the R–K
fourth algorithm with zonal-embedded grids with number of zones indicated by M : (a) error versus
grid size for Lamb dipole; (b) error versus run time size for Lamb dipole; (c) error versus grid size

for Lamb 12-pole; and (d) error versus run time size for Lamb 12-pole.

Figure 9 shows the numerical errors obtained by the embedded-grid method, in comparison
with those given by F-S-R, for the Lamb dipole �ows, (a) and (b), and for the Lamb 12-pole
�ows, (c) and (d) for various M values. Larger M indicates a smaller grid size. For the
same M value the grid size can also be controlled by changing I0 and J0 (here, J0 = 4I0).
The time step �t taken in the numerics is given by �t=0:9�tlim for both F-S-R and zonal-
embedded-grid methods. Since the numerical errors are observed to be almost invariant to
�t, the shortest run time with a �xed grid resolution (and therefore with a �xed accuracy)
would be attained by choosing �t=�tlim. The number 0.9 corresponds to a safety factor.
Figure 9(a) shows that the accuracy is improved by choosing a lower M value in the Lamb
dipole �ow. It is also remarkable to note that the zonal-embedded-grid system is superior to
F-S-R (denoted as ‘fract.’ in this �gure) for M less than 4. The second-order of accuracy
upon the change of grid size is almost assured for both methods. The run time, as shown in
Figure 9(b), is also in a lower level with the zonal-embedded-grid method than with F-S-R for
M less than 4. For the case with larger poles, Figure 9(c) and (d), the second-order accuracy
is also assured. In this �ow model too, the zonal-embedded grids provide results better than
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F-S-R if M is taken as 5 or 6. This implies that depending on the �ow characteristics, we can
choose in principle an optimal value of M which may give the best performance as for both
the accuracy and the run time. For an example, when the turbulent pipe �ow is concerned, if
the �ow pattern (e.g. Figures 4 and 5 of Reference [10] and Figure A2(a) in this paper) is
assumed to be closer to Figure 8(b) than 8(a), we had better choose a higher M . However in
practice determining an optimal M value should rely on the trial-and-error iterations for the
most problems.
The superiority of the zonal-embedded-grid method in the overall numerical performance

comes from a few factors. First, application of the O��4 algorithm to discretization of the
azimuthal derivatives and interpolations and use of the transformed di�usive terms bring a
signi�cant improvement in the numerical accuracy. Second, the extrapolation scheme (28)
used in obtaining the initial pressure �eld in solving the pressure equation in the fourth-order
Runge–Kutta method for the zonal-embedded grids provides very fast convergence property,
which in part saves the run time. On the other hand, for the F-S-R, such scheme does not
work with unknown reasons.
In fact, the solver of the pressure equation for the zonal-embedded grids is composed of

inner and outer iterations. Within the inner iteration, some of the interfacial pressures are �xed
with known values as explained in Section 3.2 (e.g. poW and poW1 in Equation (20)) and they
are updated every time the inner iteration has been converged and the next outer iteration
starts. Of course one may expect that such process may a�ect the overall convergence property
of the pressure solver. Figure 10 shows the convergence history of the pressure solvers for the
regular grids and zonal-embedded grids. The velocity components for this run are given by
the Lamb’s dipole solutions (5a) and (5b) and the initial values of the pressure are set at zero
everywhere; this is why the run needed iteration counters much larger than the usual situation.
The zonal-embedded-grid solver converges after two outer iterations and the total number of
iterations up to the �nal convergence is slightly larger than that with the regular grids. After
some tens of the main iterations from the beginning of the run, however, the zonal-embedded-
grid system needs only a few inner iterations due to the extrapolation scheme, (28), and does
not need the second outer iteration. This means that the strategy of treating some pressures
at the interfacial cells as known in the iteration process exerts almost no in�uence on the
pressure-convergence property and the overall numerical accuracy. So, all the results presented
in this study are obtained only with one outer iteration.

4.3. Spin-up in a semi-circular container

We next applied the code to the non-axisymmetric �ows, i.e. spin-up �ows inside a semi-
circular boundary. In contrast to the spin-up within a full circular container, due to the ex-
istence of corners inside the domain, this con�guration generates a boundary-layer separation
from the solid walls. The separated �ow then undergoes a vortex roll-up, vortex growth, and
vortex merging. Such dynamical behaviour is most typical in the complex �uid �ows and
thus the spin-up �ow inside a semi-circular container is thought to be suitable in verifying
the code for a general purpose. This kind of �ow was �rst studied experimentally by van
Heijst [24] at the Reynolds number 1:6 × 105 and for various liquid depths. The three-
dimensional numerical computation of this �ow was then conducted by Andersson et al.
[25]. However, their numerical results are not in good agreement with the experimental
results. For instance, the experimentally observed phenomena such as vortex merging were
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Figure 10. The convergence property of the ICCG method for solving the pressure equation for
the Lamb dipole �ow with the regular grids (open square) and that with the zonal-embedded grids
(solid circle); I × �J =64× 171. From the iteration counter 86, ICCG with the zonal-embedded
grids enters into the second outer iteration, and it stops at the beginning of the third outer

iteration because it has converged.

not observed in the numerical experiment. The fundamental reason for such a discrepancy
seems to be the low resolution of the grid system for such a high Reynolds number
�ow.
The numerical results presented in this subsection are obtained from the code with zonal-

embedded grids employing the non-conservative O(��4) algorithm with the viscous terms in
the original form.
First of all, the numerical stability was tested to this �ow. Table IV shows the results

for Re=5000 and I × J = 64 × 256, which are �xed, and for three choices of (M; I0; J0).
This result suggests that when decreasing M and increasing I0 and J0 simultaneously, we
should make the time step smaller for a stable computation. Since increase of J0 results in
the decrease of the azimuthal-grid size near the origin, it again implies that the numerical
stability is simply decided by the azimuthal-grid size at the origin, which is the smallest over
the domain. Figure 11 shows the dependence of the limit time step �tlim on the Reynolds
number for three grid systems. In each grid system, the value increases linearly with Reynolds
number when the number is low. In this regime the dependence of �tlim on Re can be
described by the empirical formula

�tlim = (0:6�s2c)Re (33)
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Figure 11. Stability diagram of the fourth-order Runge–Kutta method applied to the spin-up
�ow inside a semi-circular boundary. This diagram is obtained numerically at �=1, h=1,
!=10 and with three grid systems identi�ed by (M; I0; J0) shown. The dash–dot lines are

drawn with formula (33) in the text.

where �sc denotes the azimuthal spacing of the smallest cell contacting the origin. This value
can be obtained by

�sc=
�

J0(I − 1)
It is shown in Figure 11 that three asymptotic lines given by (33) well �t the numerical
results. Relationship (33) can be derived from the theoretical formula

�tlim =C
[ |u|
�r

+
|v|
�s

+
4
Re

(
1
�r2

+
1
�s2

)]−1
(34)

given by Akselvoll and Moin [10], by retaining only the last term within ( ). This �gure also
shows that there exists a Reynolds-number limit above which the given grid system cannot
produce a stable solution, which suggests that as Reynolds number is increased the number
of grids must also be increased for a stable solution.
Figure 12 shows the development of the velocity vectors, at Re=5000 and �=0:5, given

from the numerical solution in comparison with the experimental pathlines. In this �ow, the
speed-up of the container ends at t=0:48 and its speed is maintained at this value thereafter.
The background rotation is counterclockwise. Since most of the pathlines do not intersect with
each other, they can be considered to be very close to streamlines. First of all, it is remarkable
to see that the numerical solution exactly reproduces the experimentally observed one. At the
very beginning of the development the �ow is occupied by a large anticyclonic cell (to be
referred to as ‘primary’ vortex hereafter), which is inviscid with a uniform vorticity &= − 2
except for the thin boundary layers adjacent to the walls. Due to the existence of two corners,
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Figure 12. Development of the velocity-vector �eld obtained numerically (left-hand side) for Re=5000,
�=0:5, h=1 and !=6:54 with grids (M; I0; J0)= (5; 4; 16) and development of the pathlines obtained
from a �ow-visualization experiment with acrylic powders �oated on tap water: (a) t=4; (b) t=6;

(c) t=12; (d) t=24; and (e) t=40.
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Figure 13. u-velocity pro�les along the y-axis at t=6 (solid line and circles), t=12 (dashed line
and squares) and t=12 (dash–dot line and deltas) obtained numerically (lines) and experimentally
(symbols) for the spin-up �ow in a semi-circular boundary with the same parameter set as Figure 12.

however, this vortex brings fourth boundary-layer separations from the surrounding walls and
the separated layers roll up to form a cyclonic vortex near each corner (Figure 12(a)). The
corner vortices (to be referred to as ‘secondary’ vortices hereafter) then grow to be almost
comparable in size with the primary vortex (Figure 12(c)–(e)). During this development, the
primary vortex imparts its material to the secondary vortices via the roll-up process discussed
above and shrinks �nally to a size approximately one-third of the domain. At the �nal stage
(Figure 12(d) and (e)) the secondary vortex at the left-hand side is slightly shifted toward
the circular boundary, but it stays there all the way until the �ow vanishes completely. For
this �ow, we also tested the di�erence between the one-sided di�erence scheme (17a) and
the centred di�erence scheme (18), and no di�erence was detected between the two results.
Figure 13 shows the distribution of the azimuthal velocity component along the line �=�=2

obtained numerically for the same parameter values as Figure 12 in comparison with the
experimental results measured by the PIV method. Here the PIV results are obtained by using
the MQD-PIV method developed by Suh [26]. Two results are in good agreement with each
other except near the boundary, where due to a high velocity gradient it is generally di�cult
to measure the velocity accurately. Overall, the velocity decreases in time due to the damping
caused by the pumping=suction of the �uid material from the Ekman boundary-layer on the
bottom wall of the container; such pumping=suction is treated by the Ekman pumping velocity
WE, Equation (6).
The e�ects of the parameters, Re, � and h on the �ow pattern are expected to be signi�cant

as predicted by Suh and Choi [23] for the case of spin-up �ows in a rectangular container.
Figure 14 exhibits the decay of the spatially averaged kinetic energy E(t) for three liquid
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Figure 14. Temporal history of the spatially averaged kinetic E(t) obtained numerically for the
spin-up �ow in a semi-circular boundary with three liquid depths shown; all the other parameter

values are the same as Figure 12.

depths. It is seen that E is monotonously decreasing with time for any liquid depth. The
decay rate is however strongly dependent on the liquid depth; a shallower liquid results in
a higher decay rate. This can be explained in terms of the relation between the vorticity
dynamics and the Ekman pumping velocity WE. When the pressure is eliminated from the
momentum equations (2a) and (2b) we can obtain the vorticity transport equation, and it can
be shown that the vorticity decays in proportion to WE=h; see also Reference [18]. As is seen
from (6), WE is independent of h, therefore the vorticity decays in inverse proportion to h.
The numerical results for h=∞ are shown in Figure 15. Compared with the case of h=0:3,

Figure 12, the velocity magnitudes are large; e.g. compare Figures 12(d) and 15(a). This is
consistent with the theoretical analysis as for the e�ect of the liquid depth on damping dis-
cussed above. However, Figure 15 reveals a peculiar behaviour in that the secondary vortex
on the left-hand side travels fast along the circular boundary and merges with the secondary
vortex at the right-hand side region. This phenomenon can be explained in terms of the
e�ect of the neighbouring vortices and the circular boundary. The �ow pattern at t=24,
Figure 15(a), is in fact very similar to that for the lower depth case, Figure 12(d). For the
in�nite-depth case, however, the secondary vortex on the left-hand side is strong enough
to generate another vortex (hereafter to be referred to as ‘third’ vortex) near the left-hand
side corner, Figure 15(b). On the other hand, the secondary vortex, located in between the
primary and third vortices, resides close to the circular boundary, so it should have a ten-
dency to move toward the left-hand side due to the image-vortex e�ect from outside the
domain. On the contrary, the primary and third vortices have clockwise circulations and
thus tend to bring the secondary vortex to the right-hand side. This then means that the ob-
served transposition of the secondary vortex must have been driven dominantly by the primary
and third vortices. Such transposition of the corner vortex is also typical at high Reynolds
numbers, as will be shown shortly. On the other hand, the case with a lower depth at the
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Figure 15. Development of velocity vectors (left-hand side) and vorticity contours with the same
parameter set as Figure 12 except that this is for h=∞. In the vorticity-contour plots, the vortic-
ity values larger than 2 are coloured white, whereas the values less than −2 are black: (a) t=24;

(b) t=32; (c) t=40; (d) t=44; (e) t=48; and (f) t=52.
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Figure 16. Development of the streamlines obtained numerically (left-hand side) for
Re=10 000, �=1, h=1 and !=6:54 with grids (M; I0; J0)= (5; 8; 32) in comparison with
the pathlines obtained from a �ow-visualization experiment (right-hand side): (a) t=8;

(b) t=24; (c) t=40; (d) t=48; and (e) t=56.
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Figure 17. Development of the streamlines obtained numerically with the same �ow parameter set as
Figure 16 but with a higher grid resolution; (M; I0; J0) = (5; 10; 40): (a) t=48; and (b) t=56.

same Reynolds number, Re=5000, does not reveal such transposition, as shown in Figure
12 for h=0:3. The secondary vortex moving fast around the circular boundary is usually
smaller than (sometimes much smaller than) the primary vortex, and the movement is, as dis-
cussed above, driven mainly by the primary vortex. In this sense, we will call this ‘satellite’
vortex.
At higher Reynolds numbers and Rossby numbers, the �ow pattern becomes more com-

plex due to a lower damping e�ect. Figure 16 shows streamlines obtained numerically and
pathlines given from the experiment for Re=10000 and �=1. The experimental pathlines
are considered to be approximately the same as the corresponding streamlines. Many small
third vortices appear strong in the regions between the primary or secondary vortices and
corners or walls, where the �ow was almost stagnant at lower Reynolds numbers (Figure 12).
Here again, the third vortex near the left-hand side corner and the primary vortex enforce the
satellite vortex travel along the circular boundary (Figure 16(d) and (e)) toward the right-
hand side of the domain. After the transposition, the vortex is expected to merge with the
secondary vortex situated near the right-hand corner. Overall, the numerical and experimental
results are in good agreement with each other except in Figure 16(e), where the numerical
results reveal a faster movement of the satellite vortex than the experiment. Such a slight
di�erence disappears when a higher resolution of the grid system is adopted in the numeri-
cal computation as shown in Figure 17. Now, the streamline pattern observed numerically at
t=56 (Figure 17(b)) is in a perfect agreement with the experimental result of Figure 16(e).
On the other hand, the numerical results at the higher grid resolution are indistinguishable
from the corresponding ones of Figure 16 at t648 and so they are not presented in this
paper.
For Re=20000 and �=1, fairly good prediction was also possible at roughly t640.

However after that time, considerable discrepancy was found to exist between the numer-
ical and experimental results even with higher grid resolutions. Considering that the Ekman-
pumping velocity (6) has been derived from a quasi-steady linear approximation to the Ekman
boundary-layer on the bottom wall of the container under the assumption of high Reynolds
numbers and small Rossby numbers but with moderate vorticity, we cannot expect an accurate
long-term prediction from the two-dimensional numerical simulations especially at such high
Reynolds number and moderate Rossby number �ows.
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5. CONCLUSIONS

In this study, a zonal-embedded-grid technique has been proposed for numerical simulation
of �ows within a circular boundary with cylindrical coordinates. The bene�t of this method
is that even with the explicit method, it allows a time step far larger than the conventional
regular-grid system.
In discretization of the azimuthal derivatives and evaluation of variables at unde�ned points,

this method requires employing higher-order algorithms such as fourth-order to establish
numerical accuracy, because the number of grids along the azimuthal direction is relatively
small near the origin of the coordinates.
The developed code was applied to decaying swirl �ows and time-periodic Lamb multi-

pole �ows within a full circle and spin-up �ows within a semi-circle. Application to the Lamb
multi-pole �ows reveals that by choosing a suitable number of zones, M , we can achieve an
overall performance of the proposed method better than the conventional one with regular
grids.
For the spin-up �ow case, the code was veri�ed by comparing the numerical results with

those from the visualization experiment. At relatively low Reynolds and Rossby numbers
(Re=5000, �=0:5), the spin-up �ow organized by a three-cell structure was well pre-
dicted by the two-dimensional numerical simulation. At high Reynolds and Rossby numbers
(Re=10000, �=1), the �ow �eld was occupied by many smaller vortices, and in this case
too the numerical results well predict the overall vertical dynamics including the peculiar
phenomenon observed in the experiment, i.e. transposition of the satellite vortex from one
corner to the other.
We have successfully applied the zonal-embedded-grid method to the DNS of a fully

developed turbulent pipe �ow as shown in the appendix. It is seen that the results are in
good agreement with those of Fukagata and Kasagi [9] even with far less grids.

APPENDIX A: DNS OF A TURBULENT PIPE FLOW

The code was developed with the zonal-embedded grids to solve the three-dimensional fully
developed turbulent pipe �ow. The governing equations are of a standard form similar to
(1)–(2b) (also refer to e.g. Reference [9]). The periodic boundary conditions are applied at
the entrance z=0 and at the exit z= h, where h is the dimensionless axial length of the pipe
subject to the numerical computation. The reference velocity here is the friction velocity u�.
The time-averaged pressure gradient along the pipe axis in a dimensionless quantity is −2,
and as such we introduce a new pressure p̃ de�ned as p̃=p + 2z so that we can apply a
periodic boundary condition for p̃ at the entrance and at the exit. The initial pro�le chosen
for the axial velocity component is

wini(r; �; z)=wamp
Re
2
(1− rn)

where wamp =0:15 and n=7 was selected, after several test runs, to shorten the time needed
to reach the fully developed velocity pro�le. The initial distributions for the radial and
azimuthal velocity components were computed from asymmetric swirl �ow de�ned in Section
2 with rc=0:2 and �c=0:6. To accelerate the convergence to the fully developed state, these
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Figure A1. Typical results (symbols) of DNS for the fully developed turbulent pipe �ow at Re=180
in comparison with those (solid lines) from Reference [9]: (a) the axial mean velocity pro�le, wav;

and (b) RMS velocity �uctuations, u′, v′ and w′.
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Figure A2. Instantaneous distributions of w at t=15 obtained from the present results: (a) the (r; �)
plane at z=5; and (b) the (r; z) plane at �=�=2.

velocity components are ampli�ed by the factor 7. The three-dimensional turbulent pipe �ow
is characterized by a strongly random and �uctuating velocity �eld. Spatially, the �ow pattern
is far more complex than the laminar �ow case. So, in this application we developed more
accurate schemes for discretization of the azimuthal derivatives and interpolation along the
azimuthal direction aside from the conventional ones described in Section 3. The conventional
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algorithm used for the discretization and interpolation is based on the polynomial functions.
However, such polynomial functions may not be accurate enough near the origin of the cylin-
drical coordinate system when the number of grids is comparatively small especially for the
complex �ows like turbulence. In this regard we use the harmonic function

� = c+ a1 cos #+ b1 sin #+ a2 cos 2#+ b2 sin 2#

as the local representation of an arbitrary variable �(#), where # denotes the local azimuthal
coordinate the origin #=0 being at the point where we need to discretize the derivatives or
to obtain the interpolated values. The �ve constants c; a1; b1; : : : ; are determined by using the
�ve neighbouring values of �, e.g. �−2, �−1, �0, �1 and �2, where �k denotes the value of
� at the point #= k��. The value �1=2 may be obtained by interpolation from the harmonic
function constructed either from the set (�−2; �−1; �0; �1; �2) or from (�−1; �0; �1; �2; �3).
However, it turned out that neither of the schemes leads to a successful run of the code. Such
problem was solved by taking an average of the two results as the interpolated value. Next,
the �rst and second derivatives are discretized by using the following algorithms:[

@�
@�

]
#= 0

=d1(�1=2 − �−1=2) + d2(�3=2 − �−3=2)

[
@2�
@�2

]
#=0

= e0�0 + e1(�1 + �−1) + e2(�2 + �−2)

where d1, d2, e0, e1 and e2 are constants.
The developed code was run with the parameter values Re=180, h=10, �t=0:001, M =4,

I0 = 7, J0 = 12, K =201, where K is the number of grids along the axial direction. It took
160 h in a workstation to obtain the solutions up to t=15. It was found that the �ow
establishes to a fully developed state after t=10. So, the data within 106t615 have been
used in analysing the turbulent characteristics. Figure A1 shows typical numerical results in
comparison with those given by Fukagata and Kasagi [9]. Here y+ denotes the distance from
the wall in the wall unit; y+ =Re(1− r). The present results are obtained with coarser grids,
53 × 65 × 201, than those of Fukagata and Kasagi, 96 × 128 × 256, but the two results are
in overall in a good agreement. We can detect a slight over-prediction in the RMS velocity
�uctuations u′ and v′ near the wall and w′ near the centre, and this di�erence is of course due
to the coarser grids in the present calculations. Hopefully, we can curtail the slight protrusions
shown in the distribution of w′ at the points in between the neighbouring zones, when �ner
grids are employed. Figure A2 exhibits the contour plots of the instantaneous velocity w at
t=15. The �gure reveals smooth patterns without any discontinuity at the interfaces between
the neighbouring zones, and further they are very similar in a statistical sense to the patterns
presented by Akselvoll and Moin [10].
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